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Abstract
The general variable separated approach is successfully extended to the (2+1)-
dimensional physical model and we obtain a universal formula involving
arbitrary number of variable separated functions. Because of the existence
of the arbitrary functions in the universal formula, many new types of
structures of periodic waves, for example, the periodic–periodic interaction
waves, periodic–kink interaction waves, periodic–peakon interaction waves,
periodic–compacton interaction waves, periodic–foldon interaction waves, etc,
are investigated both analytically and graphically. Some novel features or
interesting behaviours are revealed.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv, 11.10.Lm

1. Introduction

In the study of nonlinear science, soliton theory plays a very important role and has been
applied in almost all the natural sciences especially in all the physics branches such as
condensed matter physics, field theory, fluid dynamics, plasma physics and optics, etc [1].
It is known that for the (2+1)-dimensional integrable models, there are many more abundant
localized structures than in (1+1)-dimensional case because some types of arbitrary functions
can be included in the explicit solution expression [2–4]. In the traditional treatment of a
nonlinear system, one usually studies the interaction behaviours among solitons (or solitary
waves) in respect that many methods can provide exact explicit multiple soliton (or solitary
wave) solutions. However, there are few works in the literature to study the interactions
among (elliptic) periodic waves and/or between the periodic and solitary waves because of
the difficulties to find exact and explicit multiple (elliptic) periodic wave solutions and/or
periodic-solitary wave solutions though one knows a single solitary wave solution can be
considered as a limit case of a single periodic wave solution.
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Motivated by these reasons, we take the (2+1)-dimensional Burgers equation

ut − uuy − avux − buyy − abuxx = 0, (1a)

ux = vy, (1b)

where a and b are the arbitrary constants, as a concrete example to studying the interactions
among periodic waves and solitary waves. An equivalent form of the potential Burgers
equation (1) is derived from the generalized Painlevé integrable classification [5]. In [6], one
of the present authors (C-L Bai) has studied the initial value problem and some exact solutions
of equation (1).

In section 2, we apply a general variable separated approach to solve the (2+1)-dimensional
Burgers equation and obtain its exact and explicit general solution. In section 3, some concrete
exact solutions such as the periodic–periodic, periodic–kink, periodic–peakon, periodic–
compacton and periodic–foldon interaction are graphically displayed. A brief discussion
and summary are given in the final section.

2. Variable separated solutions for the (2+1)-dimensional Burgers equation

There was a wealth of approaches for finding special solutions of the nonlinear partial
differential equation (PDE), such as the inverse scattering method, Darboux transformation,
the hyperbolic tangent method, the generalized variable-coefficient algebraic method, etc. All
these methods are described in [1–4, 7–10]. Recently, Lou and Tang [2, 3] have proposed
a multilinear variable separation approach (MLVSA) to search for the exact solutions of the
higher dimensional, specially (2+1)-dimensional, nonlinear PDEs. More recently, Tang and
Lou have proposed a more general variable separation approach (GVSA) for several (2+1)-
dimensional integrable models including the DLWE, the BKK system [11]. In this paper, we
develop and apply the GVSA to the (2+1)-dimensional Burgers equation and study interactions
among periodic waves and solitary waves.

According to the standard truncated Painlevé expansion, there is the Bäcklund
transformation

u(x, y, t) = 2bfy

f
+ u0(x, y, t), (2a)

v(x, y, t) = 2bfx

f
+ v0(x, y, t), (2b)

for the (2+1)-dimensional Burgers equation, where {u0, v0} is an arbitrary known seed solution
of equation (1). Substituting equations (2) into equations (1), two equations reduce to a single
equation

u0
(
ffyy − f 2

y

)
+ av0(ffxy − fxfy) + u0yffy + au0xffx

− (f ∂y − fy)(ft − bfyy − abfxx) = 0. (3)

Evidently, equation (1) possesses a trivial seed solution:

u0 = 0, v0 = v0(x, t), (4)

where v0 is the arbitrary function of the indicated variable. Because of equation (4),
equation (3) becomes a linear equation

ft − bfyy − abfxx − av0fx − βf = 0, (5)
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with β ≡ β(x, t) being an integration function. In order to find more exact solutions of the
(2+1)-dimensional Burgers equation, we use the GVSA to equation (5) and take the general
ansätz for the function f

f = q0 +
N∑

i=1

piqi, (6)

where qi, i = 0, 1, . . . , N and pi, i = 1, 2, . . . , N are functions of {y, t} and {x, t},
respectively.

Substituting ansätz (6) into (5) and with the help of the computer algebras (say, MAPLE),
we can get the following relations of qi and pi :

pit = (
ab∂2

x + av0∂x + β − Ci

)
pi, i = 1, 2, . . . , N, (7)

qit = bqiyy + Ciqi, i = 0, 1, 2, . . . , N, (8)

where (Ci, i = 0, 1, 2, . . . , N) being arbitrary functions of t . The corresponding solution for
the quantity V (V ≡ uxy/b ≡ vyx/b) can be written as

V = −2
∑M

i=1 pixqiy

q0 +
∑M

i=1 piqi

+
2
∑M

i=1 pixqi

(
q0y +

∑N
j=1 pjqjy

)
(
q0 +

∑M
i=1 piqi

)2 . (9)

For simplicity to study the interaction properties among periodic waves and solitary waves
for the potential V of the (2+1)-dimensional Burgers equation, we fix

M = N = 1, p1 = p,

in relation (9); then formula (9) becomes

V = 2px(q1q0y − q0q1y)

(q0 + pq1)2
, (10)

where q0 and q1 are the arbitrary functions of {y, t} and p is an arbitrary function of {x, t}.

3. Interactions among periodic waves and solitary waves for the (2+1)-dimensional
system

3.1. Interactions among doubly periodic waves

It is known that for the nonlinear systems, the doubly periodic wave structures can usually be
expressed by means of the Jacobi elliptic functions with constant module. For instance, if we
take

p = sn(ξ1,m1) + sn(ξ2,m2), ξ1 = k1x + ω1t, ξ2 = k2x + ω2t,

q0 = α + sn(η0, n0), q1 = sn(η1, n1), η0 = l0y + c0t, η1 = l1y + c1t,

where sn is the Jacobi elliptic sine function, k1, ω1, k2, ω2, l0, c0, l1, c1, m1, m2, n0 and n1 are
arbitrary constants, constant α guarantees that the solution has no singularity, then we have

V = 2(k1 cn(ξ1,m1)dn(ξ1,m1) + k2 cn(ξ2,m2)dn(ξ2,m2))

× (l0 sn(η1, n1)cn(η0, n0)dn(η0, n0) − l1(α + sn(η0, n0))cn(η1, n1)dn(η1, n1))

(α + sn(η0, n0) + (sn(ξ1,m1) + sn(ξ2,m2))sn(η1, n1))2
,

(11)
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Figure 1. The evolution of a special doubly periodic structure of the Burgers for the quantity V

expressed by equation (10) with the special fixed condition (11) at times (a) t = −5, (b) t = 0 and
(c) t = 5, respectively.

which denotes a special type of doubly periodic wave solution in both x and y directions.
Figure 1 shows the interaction property of equation (11) with different speeds. From figure 1,
we can see that the interaction of doubly periodic waves is nonelastic. Moreover, p, q0 and
q1 can also be taken as the elliptic functions of different types, and we can even take p as the
form

∑M
i=1 sn(ξi, mi), q0 and/or q1 the form

∑N
j=1 cn(ηj , nj ), etc. Of course, we may obtain

a diversity of periodic wave solutions in terms of the Jacobi elliptic functions by selecting the
arbitrary functions appropriately. It is worth noting that the Jacobi transformation, detailed
description can be found in [12], implies that any solution found by one Jacobi elliptic function
may be transformed into an equivalent one that can be obtained by another. Moreover, since
other Jacobi elliptic functions have singularities, we consider only the periodic wave solutions
in terms of sn- and cn-functions.

Remark. Due to the limit of space, we only list the sn-function expression in this paper and
omit the cn-function expression and sn- and cn-functions mixed expression.

Due to the elementary properties of the elliptic functions, when m → 0, the Jacobi
elliptic functions degenerate to the trigonometric functions, i.e., sn ξ → sin ξ, cn ξ → cos ξ,

dn ξ → 1, and when m → 1, the Jacobi elliptic functions degenerate to the hyperbolic
functions, i.e., sn ξ → tanh ξ, cn ξ → sech ξ, dn ξ → sech ξ . As m1, m2, n0 and n1

approach 1, it follows from equation (11) that

V = 2(k1 sech2(ξ1) + k2 sech2(ξ2))(l0 tanh(η1)sech2(η0) − l1(α + tanh(η0))sech2(η1))

(α + sn(η0, n0) + (sn(ξ1,m1) + sn(ξ2,m2))sn(η1, n1))2
, (12)
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Figure 2. The evolution of two-dromion solution equation (12) with α = 5 at times (a) t = −10,
(b) t = 0 and (c) t = 10, respectively.

Figure 2 shows the evolution of equation (12) with α = 5, a two-dromion solution. From the
figures, one can see the interaction of two dromions with nonelastic properties. It is interesting
to see that equation (12) with α = 3 is a dromion–solitoff solution! And its evolution is shown
by figure 3. We can see from figure 3 that their interaction is also nonelastic.

Along the same line of argument and performing a similar analysis, when m1, m2 approach
0 and n0, n1 approach 1, from equation (11) one has

V = 2(k1 cos(ξ1) + k2 cos(ξ2))(l0 tanh(η1)sech2(η0) − l1(α + tanh(η0))sech2(η1))

(α + tanh(η0) + (sin(ξ1) + sin(ξ2)) tanh(η1))2
, (13)

which is periodic in the propagating direction x and exponentially decays in y. We call it
x-periodic solitary wave. As m1, m2 approach 1 and n0, n1 approach 0, from equation (11)
we obtain that

V = 2(k1 sech2(ξ1) + k2 sech2(ξ2))(l0 sin(η1) cos(η0) − l1(α + sin(η0)) cos(η1))

(α + sin(η0) + (tanh(ξ1) + tanh(ξ2)) sin(η1))2
, (14)

which is periodic in the propagating direction y. The graphic representation of x- and y-
periodic solitary waves expressed by equations (13) and (14) is a trivial thing by MAPLE
and is omitted. In other words, the study of limit cases to these doubly periodic wave
solutions indicates that the Jacobi elliptic wave solutions can be viewed as the generalization
of dromions, dromion–solitoff solutions and periodic solutions.
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Figure 3. The evolution of dromion–solitoff solution equation (12) with α = 3 at times (a) t =
−5, (b) t = 0 and (c) t = 5, respectively.

3.2. Periodic–kink interaction waves

If we select the functions p, q0 and q1 such that one of them possesses localized structures
while the other has a periodic structure the wave solution (10) becomes a periodic line solitary
wave. For example, the selection

p = sn(ξ1,m1) + sn(ξ2,m2), ξ1 = k1x + ω1t, ξ2 = k2x + ω2t,

q0 = 10, q1 = tanh(η1), η1 = l1y + c1t,

where sn is the Jacobi elliptic sine function, k1, ω1, k2, ω2, l1, c1, m1 and m2 are arbitrary
constants, makes equation (10) to be a line periodic solitary wave:

V = −20l1(k1 cn(ξ1,m1) dn(ξ1,m1) + k2 cn(ξ2,m2) dn(ξ2,m2))sech2(η1)

(10 + (sn(ξ1,m1) + sn(ξ2,m2)) tanh(η1))2
. (15)

Figure 4 displays the evolution structure of equation (15) with the parameter selections as

k1 = 1, k2 = 2, ω1 = ω2 = 1, l1 = 1, m1 = 0.8, m2 = 0.9.

3.3. Periodic–peakon interaction waves

It is well known that, in addition to the continuous localized excitations in (1+1)-dimensional
nonlinear systems, some types of significant weak solutions such as the peakon and compacton
have attracted much attention of both mathematicians and physicists. The so-called peakon
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Figure 4. The evolution of the periodic–kink structure of the Burgers for the quantity expressed
by equation (15) at times (a) t = −10, (b) t = 0 and (c) t = 10, respectively.

solution (u = c exp(−|x − ct |)) referred to as a weak solution of the celebrated (1+1)-
dimensional Camassa–Holm equation

ut + 2kux − uxxt + 3uux = 2uxuxx + uuxxx, (16)

was firstly given by Camassa and Holm [13]. While the so-called (1+1)-dimensional
compacton solutions which describe the typical (1+1)-dimensional soliton solutions with finite
wavelength when the nonlinear dispersion effects are included were firstly given by Rosenau
and Hyman [14]. In this subsection, we extend the peakon solution to the high-dimensional
nonlinear system and give periodic–peakon wave solutions by selecting the arbitrary functions
as Jacobi elliptic functions and peakon solution respectively. For instance, if we take

p =
{∑M

i=1 di exp(mix − βit + x0i ), mix − βit + x0i � 0∑M
i=1 (−di exp(−mix + βit − x0i ) + 2di), mix − βit + x0i〉0,

q0 = 5, q1 = sn(η1, n1), η1 = l1y + c1t,

(17)

then equation (10) is a doubly periodic–peakon wave solution.
Figure 5 exhibits the interaction structure of the periodic–peakon wave solution (17) with

the parameter selections as

d1 = d2 = 1, m1 = m2 = 1, β1 = −1, β2 = 2, x01 = 4,

x02 = −4, l1 = 1, n1 = 0.85.
(18)
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Figure 5. The evolution of a periodic–peakon interaction waves solution (10) with conditions (17)
and (18) at times (a) t = −6, (b) t = −2.7 and (c) t = 0.6, respectively.

3.4. Periodic–compacton interaction waves

Similar to the above ideas, if one of the functions p, q0 and q1 is selected as a localized function
such as compacton and the other is selected as the Jacobi elliptic function, then equation (10)
becomes a periodic–compacton wave solution. Here is a special example

p = ∑M
i=1




0, x + βit � x0i − π

2ki

bi cosαi+1(ki(x + βit − x0i )), x0i − π

2ki

< x + βit � x0i +
π

2ki

0, x + βit > x0i +
π

2ki

,

q0 = 5, q1 = sn(η1, n1), η1 = l1y + c1t,

(19)

where bi, ki, βi and x0i are arbitrary constants, and {αi} for all {i} are positive integers;
solution (10) becomes a periodic–compacton interaction waves.

Figure 6 displays a special periodic–compacton waves expressed by equation (10) with
equation (19) and the parameter selections as

b1 = −2, b2 = −1, k1 = k2 = 1, β1 = −1, β2 = 3,

x01 = x02 = 0, α1 = α2 = 4, l1 = 1, n1 = 0.85.
(20)
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Figure 6. The evolution of periodic–compacton interaction waves as seen in the physical quantity
V with conditions (19) and (20) at times (a) t = −3, (b) t = 0 and (c) t = 3, respectively.

3.5. Periodic–foldon interaction waves

As a final example along with the above ideas, we can construct periodic–foldon interaction
waves for the (2+1)-dimensional Burgers system if the functions q0 and/or q are Jacobi elliptic
function and p is selected via the relations

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), p =
∫ ξ

pxxξ dξ, (21)

where Ui and Xi are localized excitations with the properties Ui(±∞) = 0, Xi(±∞)= const.
From equation (21), one knows that ξ may be a multi-valued function in some suitable regions
of x by selecting the functions Xi appropriately. Therefore, the function px , which is obviously
an interaction solution of M localized excitations because of the property ξ |x→∞ → ∞, may be
a multi-valued function of x in these areas, though it is a single-valued function of ξ . Actually,
most of the known multi-loop solutions are a special situation of equation (21). To study
the periodic–foldon wave solutions and their interaction properties in the (2+1)-dimensional
system, we take

px = − 4
5 sech2(ξ) − 1

2 sech2(ξ − t), x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − t),

q0 = 5, q1 = sn(η1, n1), η1 = l1y + c1t
(22)

in equation (10); then the evolution plots of the periodic–foldon interaction waves are displayed
in figure 7.
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Figure 7. The evolution of periodic–foldon interaction waves as seen in the physical quantity V

with conditions (22) at times (a) t = −5.5, (b) t = 0 and (c) t = 5.5, respectively.

4. Summary

In summary, by using the general variable separated approach, we obtain a universal formula
in which arbitrary number of variable separated functions can be involved. Thanks to the
existence of the arbitrary functions in the universal formula, some special types of explicit
multiple wave interaction solutions including periodic–periodic waves, periodic–kink waves,
periodic–peakon waves, periodic–compacton waves and periodic–foldon waves are explicitly
given both analytically and graphically.

Even for two periodic interaction waves there may be many interesting features. In this
paper, through the study of limit cases to these doubly periodic wave solutions, we find that
the Jacobi elliptic wave solutions can be viewed as the generalization of dromions, dromion–
solitoff solutions and periodic solutions. Moreover, due to the wide applications of the Burgers
equation in physics, it is more interesting to find some possible applications of these exact
solutions. However, lacking experiments related to the high-dimensional Burgers, we could
not further say something about the real physical meanings of our exact solution. We hope
that in future experimental studies some kind of exact wave solutions obtained here can be
realized in some fields such as those listed in the introduction.
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